Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612562

RESUMEN

Fracture healing is a complex series of events that requires a local inflammatory reaction to initiate the reparative process. This inflammatory reaction is important for stimulating the migration and proliferation of mesenchymal progenitor cells from the periosteum and surrounding tissues to form the cartilaginous and bony calluses. The proinflammatory cytokine interleukin (IL)-17 family has gained attention for its potential regenerative effects; however, the requirement of IL-17 signaling within mesenchymal progenitor cells for normal secondary fracture healing remains unknown. The conditional knockout of IL-17 receptor a (Il17ra) in mesenchymal progenitor cells was achieved by crossing Il17raF/F mice with Prx1-cre mice to generate Prx1-cre; Il17raF/F mice. At 3 months of age, mice underwent experimental unilateral mid-diaphyseal femoral fractures and healing was assessed by micro-computed tomography (µCT) and histomorphometric analyses. The effects of IL-17RA signaling on the osteogenic differentiation of fracture-activated periosteal cells was investigated in vitro. Examination of the intact skeleton revealed that the conditional knockout of Il17ra decreased the femoral cortical porosity but did not affect any femoral trabecular microarchitectural indices. After unilateral femoral fractures, Il17ra conditional knockout impacted the cartilage and bone composition of the fracture callus that was most evident early in the healing process (day 7 and 14 post-fracture). Furthermore, the in vitro treatment of fracture-activated periosteal cells with IL-17A inhibited osteogenesis. This study suggests that IL-17RA signaling within Prx1+ mesenchymal progenitor cells can influence the early stages of endochondral ossification during fracture healing.


Asunto(s)
Fracturas del Fémur , Células Madre Mesenquimatosas , Animales , Ratones , Curación de Fractura , Osteogénesis , Microtomografía por Rayos X , Inflamación
2.
Hum Mol Genet ; 29(14): 2395-2407, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32588887

RESUMEN

Tuberous sclerosis complex (TSC) is a rare autosomal dominant neurodevelopmental disorder characterized by variable expressivity. TSC results from inactivating variants within the TSC1 or TSC2 genes, leading to constitutive activation of mechanistic target of rapamycin complex 1 signaling. Using a mouse model of TSC (Tsc2-RG) in which the Tsc2 gene is deleted in radial glial precursors and their neuronal and glial descendants, we observed increased ornithine decarboxylase (ODC) enzymatic activity and concentration of its product, putrescine. To test if increased ODC activity and dysregulated polyamine metabolism contribute to the neurodevelopmental defects of Tsc2-RG mice, we used pharmacologic and genetic approaches to reduce ODC activity in Tsc2-RG mice, followed by histologic assessment of brain development. We observed that decreasing ODC activity and putrescine levels in Tsc2-RG mice worsened many of the neurodevelopmental phenotypes, including brain growth and neuronal migration defects, astrogliosis and oxidative stress. These data suggest a protective effect of increased ODC activity and elevated putrescine that modify the phenotype in this developmental Tsc2-RG model.


Asunto(s)
Neuronas/metabolismo , Ornitina Descarboxilasa/genética , Esclerosis Tuberosa/genética , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Mutación/genética , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/patología , Fenotipo , Poliaminas/metabolismo , Esclerosis Tuberosa/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
3.
Hum Mol Genet ; 27(12): 2113-2124, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29635516

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant neurodevelopmental disorder and the quintessential disorder of mechanistic Target of Rapamycin Complex 1 (mTORC1) dysregulation. Loss of either causative gene, TSC1 or TSC2, leads to constitutive mTORC1 kinase activation and a pathologically anabolic state of macromolecular biosynthesis. Little is known about the organ-specific metabolic reprogramming that occurs in TSC-affected organs. Using a mouse model of TSC in which Tsc2 is disrupted in radial glial precursors and their neuronal and glial descendants, we performed an unbiased metabolomic analysis of hippocampi to identify Tsc2-dependent metabolic changes. Significant metabolic reprogramming was found in well-established pathways associated with mTORC1 activation, including redox homeostasis, glutamine/tricarboxylic acid cycle, pentose and nucleotide metabolism. Changes in two novel pathways were identified: transmethylation and polyamine metabolism. Changes in transmethylation included reduced methionine, cystathionine, S-adenosylmethionine (SAM-the major methyl donor), reduced SAM/S-adenosylhomocysteine ratio (cellular methylation potential), and elevated betaine, an alternative methyl donor. These changes were associated with alterations in SAM-dependent methylation pathways and expression of the enzymes methionine adenosyltransferase 2A and cystathionine beta synthase. We also found increased levels of the polyamine putrescine due to increased activity of ornithine decarboxylase, the rate-determining enzyme in polyamine synthesis. Treatment of Tsc2+/- mice with the ornithine decarboxylase inhibitor α-difluoromethylornithine, to reduce putrescine synthesis dose-dependently reduced hippocampal astrogliosis. These data establish roles for SAM-dependent methylation reactions and polyamine metabolism in TSC neuropathology. Importantly, both pathways are amenable to nutritional or pharmacologic therapy.


Asunto(s)
Encéfalo/metabolismo , Metabolómica , Esclerosis Tuberosa/metabolismo , Animales , Encéfalo/patología , Cistationina/genética , Cistationina betasintasa/genética , Metilación de ADN/genética , Modelos Animales de Enfermedad , Eflornitina/administración & dosificación , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Metionina Adenosiltransferasa/genética , Ratones , Neuronas/metabolismo , Neuronas/patología , Poliaminas/metabolismo , Putrescina/biosíntesis , S-Adenosilmetionina/metabolismo , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
4.
Nat Commun ; 8(1): 624, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28935892

RESUMEN

The innate inflammatory response contributes to secondary injury in brain trauma and other disorders. Metabolic factors such as caloric restriction, ketogenic diet, and hyperglycemia influence the inflammatory response, but how this occurs is unclear. Here, we show that glucose metabolism regulates pro-inflammatory NF-κB transcriptional activity through effects on the cytosolic NADH:NAD+ ratio and the NAD(H) sensitive transcriptional co-repressor CtBP. Reduced glucose availability reduces the NADH:NAD+ ratio, NF-κB transcriptional activity, and pro-inflammatory gene expression in macrophages and microglia. These effects are inhibited by forced elevation of NADH, reduced expression of CtBP, or transfection with an NAD(H) insensitive CtBP, and are replicated by a synthetic peptide that inhibits CtBP dimerization. Changes in the NADH:NAD+ ratio regulate CtBP binding to the acetyltransferase p300, and regulate binding of p300 and the transcription factor NF-κB to pro-inflammatory gene promoters. These findings identify a mechanism by which alterations in cellular glucose metabolism can influence cellular inflammatory responses.Several metabolic factors affect cellular glucose metabolism as well as the innate inflammatory response. Here, the authors show that glucose metabolism regulates pro-inflammatory responses through effects on the cytosolic NADH:NAD+ ratio and the NAD(H)-sensitive transcription co-repressor CtBP.


Asunto(s)
Oxidorreductasas de Alcohol/inmunología , Proteínas Co-Represoras/inmunología , Proteínas de Unión al ADN/inmunología , Inmunidad Innata , Fosfoproteínas/inmunología , Transcripción Genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Sitios de Unión , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Metabolismo Energético , Glucosa/inmunología , Glucosa/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Microglía/inmunología , Microglía/metabolismo , NAD/inmunología , FN-kappa B/genética , FN-kappa B/inmunología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Células RAW 264.7 , Ratas , Transducción de Señal , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/inmunología , Factores de Transcripción p300-CBP/metabolismo
5.
Glia ; 64(11): 1869-78, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27444121

RESUMEN

Brain injury resulting from stroke or trauma can be exacerbated by the release of proinflammatory cytokines, proteases, and reactive oxygen species by activated microglia. The microglial activation resulting from brain injury is mediated in part by alarmins, which are signaling molecules released from damaged cells. The nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) has been shown to regulate microglial activation after brain injury, and here we show that signaling effects of the alarmin S100B are regulated by PARP-1. S100B is a protein localized predominantly to astrocytes. Exogenous S100B added to primary microglial cultures induced a rapid change in microglial morphology, upregulation of IL-1ß, TNFα, and iNOS gene expression, and release of matrix metalloproteinase 9 and nitric oxide. Most, though not all of these effects were attenuated in PARP-1(-/-) microglia and in wild-type microglia treated with the PARP inhibitor, veliparib. Microglial activation and gene expression changes induced by S100B injected directly into brain were likewise attenuated by PARP-1 inhibition. The anti-inflammatory effects of PARP-1 inhibitors in acutely injured brain may thus be mediated in part through effects on S100B signaling pathways. GLIA 2016;64:1869-1878.


Asunto(s)
Alarminas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Microglía/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/farmacología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Bencimidazoles/farmacología , Encéfalo/citología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fenantrenos/farmacología , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Polisacáridos/toxicidad , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo
6.
PLoS One ; 7(12): e50594, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23227189

RESUMEN

Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.


Asunto(s)
Proteínas de Drosophila/fisiología , Etanol/farmacología , MAP Quinasa Quinasa 4/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Secuencia de Bases , Conducta Animal , Cartilla de ADN , Drosophila , Inmunohistoquímica , MAP Quinasa Quinasa 4/genética , Ratones , Ratones Endogámicos C57BL , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
J Neurosci ; 30(26): 8830-40, 2010 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-20592205

RESUMEN

There is considerable interest in the regulation of sensorimotor gating, since deficits in this process could play a critical role in the symptoms of schizophrenia and other psychiatric disorders. Sensorimotor gating is often studied in humans and rodents using the prepulse inhibition of the acoustic startle response (PPI) model, in which an acoustic prepulse suppresses behavioral output to a startle-inducing stimulus. However, the molecular and neural mechanisms underlying PPI are poorly understood. Here, we show that a regulatory pathway involving protein phosphatase 2A (PP2A), glycogen synthase kinase 3 beta (GSK3beta), and their downstream target, the M-type potassium channel, regulates PPI. Mice (Mus musculus) carrying a hypomorphic allele of Ppp2r5delta, encoding a regulatory subunit of PP2A, show attenuated PPI. This PPP2R5delta reduction increases the phosphorylation of GSK3beta at serine 9, which inactivates GSK3beta, indicating that PPP2R5delta positively regulates GSK3beta activity in the brain. Consistently, genetic and pharmacological manipulations that reduce GSK3beta function attenuate PPI. The M-type potassium channel subunit, KCNQ2, is a putative GSK3beta substrate. Genetic reduction of Kcnq2 also reduces PPI, as does systemic inhibition of M-channels with linopirdine. Importantly, both the GSK3 inhibitor 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)1H-pyrrole-2,5-dione (SB216763) and linopirdine reduce PPI when directly infused into the medial prefrontal cortex (mPFC). Whole-cell electrophysiological recordings of mPFC neurons show that SB216763 and linopirdine have similar effects on firing, and GSK3 inhibition occludes the effects of M-channel inhibition. These data support a previously uncharacterized mechanism by which PP2A/GSK3beta signaling regulates M-type potassium channel activity in the mPFC to modulate sensorimotor gating.


Asunto(s)
Percepción Auditiva/fisiología , Encéfalo/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Inhibición Psicológica , Canales de Potasio/metabolismo , Proteína Fosfatasa 2/metabolismo , Secuencia de Aminoácidos , Animales , Percepción Auditiva/efectos de los fármacos , Encéfalo/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fosforilación , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Proteína Fosfatasa 2/genética , Reflejo de Sobresalto/efectos de los fármacos , Reflejo de Sobresalto/fisiología , Transducción de Señal
8.
Neuropharmacology ; 56 Suppl 1: 97-106, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18694769

RESUMEN

In the last decade, the fruit fly Drosophila melanogaster, highly accessible to genetic, behavioral and molecular analyses, has been introduced as a novel model organism to help decipher the complex genetic, neurochemical, and neuroanatomical underpinnings of behaviors induced by drugs of abuse. Here we review these data, focusing specifically on cocaine-related behaviors. Several of cocaine's most characteristic properties have been recapitulated in Drosophila. First, cocaine induces motor behaviors in flies that are remarkably similar to those observed in mammals. Second, repeated cocaine administration induces behavioral sensitization a form of behavioral plasticity believed to underlie certain aspects of addiction. Third, a key role for dopaminergic systems in mediating cocaine's effects has been demonstrated through both pharmacological and genetic methods. Finally, and most importantly, unbiased genetic screens, feasible because of the simplicity and scale with which flies can be manipulated in the laboratory, have identified several novel genes and pathways whose role in cocaine behaviors had not been anticipated. Many of these genes and pathways have been validated in mammalian models of drug addiction. We focus in this review on the role of LIM-only proteins in cocaine-induced behaviors.


Asunto(s)
Trastornos Relacionados con Cocaína/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Homeodominio/metabolismo , Modelos Genéticos , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Cocaína/administración & dosificación , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/administración & dosificación , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Proteínas de Homeodominio/genética
9.
Mol Cell Biol ; 22(22): 7993-8004, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12391165

RESUMEN

cDNAs were cloned for the murine and human orthologues of Chlamydomonas PF20, a component of the alga axoneme central apparatus that is required for flagellar motility. The mammalian genes encode transcripts of 1.4 and 2.5 kb that are highly expressed in testis. The two transcripts appear to arise from alternative transcription start sites. The murine Pf20 gene was mapped to chromosome 1, syntenic with the location of the human gene on chromosome 2. An antibody generated against an N-terminal sequence of mouse Pf20 recognized a 71-kDa protein in sperm and testis extracts. Immunocytochemistry localized Pf20 to the tails of permeabilized sperm; electron microscope immunocytochemistry showed that Pf20 was located in the axoneme central apparatus. A murine Pf20-green fluorescent protein fusion protein expressed in Chinese hamster ovary cells accumulated in the cytoplasm. When coexpressed with Spag6, the mammalian orthologue of Chlamydomonas PF16, Pf20 was colocalized with Spag6 on polymerized microtubules. Yeast two-hybrid assays demonstrated interaction of the Pf20 WD repeats with Spag6. Pf20 was markedly reduced in sperm collected from mice lacking Spag6, which are infertile due to a motility defect. Our observations provide the first evidence for an association between mammalian orthologues of two Chlamydomonas proteins known to be critical for axoneme structure and function.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas/metabolismo , Proteínas de Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Protozoarias , Espermatozoides/fisiología , Proteínas Algáceas/genética , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Flagelos/metabolismo , Humanos , Masculino , Ratones , Proteínas de Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Espermatozoides/química , Espermatozoides/citología , Testículo/química , Extractos de Tejidos , Técnicas del Sistema de Dos Híbridos
10.
Nat Genet ; 32(2): 290-5, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12244319

RESUMEN

Rab3a is the most abundant Rab (ras-associated binding) protein in the brain and has a regulatory role in synaptic vesicle trafficking. Mice with a targeted loss-of-function mutation in Rab3a have defects in Ca(2+)-dependent synaptic transmission: the number of vesicles released in response to an action potential is greater than in wildtype mice, resulting in greater synaptic depression and the abolishment of CA3 mossy-fiber long term potentiation. The effect of these changes on behavior is unknown. In a screen for mouse mutants with abnormal rest-activity and sleep patterns, we identified a semidominant mutation, called earlybird, that shortens the circadian period of locomotor activity. Sequence analysis of Rab3a identified a point mutation in the conserved amino acid (Asp77Gly) within the GTP-binding domain of this protein in earlybird mutants, resulting in significantly reduced levels of Rab3a protein. Phenotypic assessment of earlybird mice and a null allele of Rab3a revealed anomalies in circadian period and sleep homeostasis, providing evidence that Rab3a-mediated synaptic transmission is involved in these behaviors.


Asunto(s)
Ritmo Circadiano/genética , Mutación Puntual , Privación de Sueño/fisiopatología , Proteína de Unión al GTP rab3A/genética , Alelos , Animales , Western Blotting , Etilnitrosourea , Femenino , Homeostasis , Locomoción/genética , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Trastornos del Sueño-Vigilia/genética , Proteína de Unión al GTP rab3A/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...